A Bootstrap Test for Time Series Linearity
نویسندگان
چکیده
A bootstrap algorithm is proposed for testing Gaussianity and linearity in stationary time series, and consistency of the relevant bootstrap approximations is proven rigorously for the first time. Subba Rao and Gabr (1980) and Hinich (1982) have formulated some well-known nonparametric tests for Gaussianity and linearity based on the asymptotic distribution of the normalized bispectrum. The proposed bootstrap procedure gives an alternative way to approximate the finite-sample null distribution of such test statistics. We revisit a modified form of Hinich’s test utilizing kernel smoothing, and compare its performance to the bootstrap test on several simulated and two real data sets—the S&P 500 returns and the quarterly US real GNP growth rate. Interestingly, Hinich’s test and the proposed bootstrapped version yield substantially different results when testing Gaussianity and linearity of the GNP data.
منابع مشابه
Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches
Detecting nonlinearity in financial time series is a key point when the main interest is to understand the generating process. One of the main tests for testing linearity in time series is the Hinich Bispectrum Nonlinearity Test (HINBIN). Although this test has been succesfully applied to a vast number of time series, further improvement in the size power of the test is possible. A new method t...
متن کاملTesting time series linearity: traditional and bootstrap methods
We review the notion of time series linearity and describe recent advances in linearity and Gaussianity testing via data-resampling methodologies. Many advances have been made since the first published tests of linearity and Gaussianity by Subba Rao and Gabr in 1980, including several resampling-based proposals. This article is intended to be instructive in explaining and motivating linearity t...
متن کاملTests for Serial Independence and Linearity based on Correlation Integrals
We propose information theoretic tests for serial independence and linearity in time series. The test statistics are based on the conditional mutual information, a general measure of dependence between lagged variables. In case of rejecting the null hypothesis, this readily provides insights into the lags through which the dependence arises. The conditional mutual information is estimated using...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملThe Impact of Bootstrap Methods on Time Series Analysis
Sparked by Efron’s seminal paper, the decade of the 1980s was a period of active research on bootstrap methods for independent data— mainly i.i.d. or regression set-ups. By contrast, in the 1990s much research was directed towards resampling dependent data, for example, time series and random fields. Consequently, the availability of valid nonparametric inference procedures based on resampling ...
متن کامل